Skip to main content

Verified by Psychology Today

Photo by Kristina Paukshtite from Pexels

Epigenetics

Epigenetics is the study of changes in how genes are expressed. While these changes do not alter the sequence of a person's genetic code, they play an important role in development. Scientists who work in epigenetics explore the mechanisms that affect the activity of genes.

Epigenetics vs. Genetics

Each person's DNA lays the groundwork for the development of physical and psychological characteristics, but the activity of genes can be modified by various factors. The chemical modifications that influence gene activity in this way are collectively called the epigenome.

These modifications occur naturally and help to steer development—for example, they enable cells in the brain and in other parts of the body to perform specialized roles based on the same underlying genetic code. But the epigenome is also susceptible to influence by exposure to toxins and other environmental factors.

What's the difference between genetics and epigenetics?

Genetics is the study of genes—the units of a person’s genetic code, made from DNA—and the traits that they influence. Epigenetics focuses on physical changes that affect how the genes are “expressed”—whether, for example, a particular gene is active or not, and thus whether particular proteins are produced. 

How do epigenetic changes affect gene expression?

Epigenetic changes do not actually change the underlying DNA sequence of genes. Instead, they involve the attachment of chemical compounds to the DNA. (The prefix “epi-” means “above” or “upon.”) One major type of epigenetic mechanism, called DNA methylation, occurs when molecules called methyl groups attach to certain pieces of DNA. This may render a gene inactive—preventing the creation of proteins based on the gene—by physically blocking off the DNA and through other, less direct effects. Methylation can activate genes as well. Epigenetic changes also include modifications to the histone proteins around which DNA molecules are wound, along with other kinds of alterations.

article continues after advertisement

Epigenetics and Psychology

Pezibear/Pixabay

All human characteristics, including psychological ones, are influenced to some extent by genetics. Since the epigenome modulates the effects of an individual's genome—and because it can be influenced by external factors—it is naturally a major area of exploration for those seeking to understand how individual differences, mental illness and other aspects of cognitive life take shape.

Behavioral geneticists and behavioral epigeneticists are scientists who investigate whether epigenetic changes can help account for vulnerability to certain forms of mental illness. Another possibility that has received attention in recent years is that epigenetic changes resulting from traumatic experiences can be passed from one generation to the next, sometimes called intergenerational transmission of trauma.

How is epigenetics related to mental illness?

Evidence that epigenetic differences are associated with mental illness has been found for depression, schizophrenia, bipolar disorder, and other conditions. For example, research participants with depression have shown differences—compared to those without depression—in levels of methylation of a gene responsible for production of brain-derived neurotrophic factor (BDNF). It remains to be determined whether epigenetic differences like these are important for the development of these mental disorders, but in any case, they may serve as biomarkers for the conditions.

How does stress affect epigenetics?

Severe stress early in life, some research suggests, may result in epigenetic changes that contribute to a lasting increase in one’s physiological stress response. Such an effect could reflect a mechanism for adapting to a threatening environment based on early experience. But when the source of stress, such as early mistreatment, does not continue indefinitely, a bolstered stress response could prove harmful in the long term. (Studies with rodents make up much of the research on early adversity and epigenetics.)

Essential Reads

Recent Posts