Skip to main content

Verified by Psychology Today

Addiction

Loss, but not absence, of control – How choice and addiction are related

Talking about addiction without talking about control is just silly

Dr. Dodes' recent article, titled "The Myth of Addictiveness" reminded me of his other posts to a large extent, but also of a recent article on All About Addiction claiming that the notion of "loss of control" is an addiction myth. Dr. Dodes brings up some relevant and thoughtful points, specifically about behavioral adddictions, although he makes some of the very mistakes brought up by Christopher Russel, the author of the original A3 article. Though I obviously personally believe in control- and choice-relevant neurological mechanisms playing a part in addiction, this conversation is a common one both within and outside of the substance abuse field. Therefore, I welcome the discussion onto our pages. I'd like to start out by reviewing some of the more abstract differences between my view and the one expressed by Christopher and follow those with some evidence to support my view and refute the evidence brought forth by him.

Addiction concetualization - Philosophical and logical differences and misinterpretations

One of the first issues I take with the argument against control as a major factor in addiction is the interpretation of the phrase "loss of control" as meaning absence, rather than a reduction, in control over addiction. Clearly though, one of the definitions of loss is a "decrease in amount, magnitude, or degree" (from Merriam-Webster.com) and not the destruction of something. Science is an exercise in probabilities so when scientists say "loss", they mean a decrease and not a complete absence in the same way that findings showing that smoking causes cancer do not mean that if an individual smokes they will inevitably develop cancerous tumors. Similarly, the word "can't" colloquially means having a low probability of success and not the complete inability to succeed. Intervention that improve the probability of quit (like bupropion or quitlines for smoking) success are therefore said to cause improvements in the capacity for quitting.

Next, Christopher wants scientists to identify the source of "will" in the brain but I suggest that "will" itself is simply a term he has given a behavioral outcome - the ability to make a choice that falls in line with expectations. In actuality, "will" is more commonly used as a reference to motivation, which while measurable, isn't really the aspect of addiction involved in cognitive control. Instead, what we're talking about is "capacity" to make a choice. The issue is a significant, not semantic one, since the argument most neuroscientists make about substance abuse is that addicts suffer a reduced capacity to make appropriate behavioral choices, especially as they pertain to engaging in the addictive behavior of interest. If someone is attempting to get into a car but repeatedly fails, we say they can't get in the car (capacity), not that they don't want to (will). Saying that they simply "don't" get in the car doesn't get at either capacity or will but instead is simply descriptive. I don't believe that science is, or should be, merely descriptive but instead that it allows us to form conclusions based on available information.

That there is a segment of individuals who develop compulsive behavioral patterns tied to alcohol and drug use and who attempt to stop but fail is, to my mind, evidence that those individuals have a difficulty (capacity) in ceasing their drug use. Their motivation (will) to quit is an aspect that has been shown to be associated with their probability of success but the two are by no means synonymous. It is important to note, and understand, that the attribution for the performance should not fall squarely on the shoulders of the individuals. We humans are so prone to making that mistake that it has a name, "The fundamental attribution error," and indeed, individuals who show compulsive, addictive, behavior do so because of neuropharmacological, environmental, and social reasons in addition to the complex interactions between them all. But no one is disputing that and in fact, the article used by Christopher to point out the notion of a "tipping point" in addiction directly points out that fact in the next paragraph (Page 4), which he chose not to reference or acknowledge.

"Of course, addiction is not that simple. Addiction is not just a brain disease. It is a brain disease for which the social contexts in which it has both developed and is expressed are critically important... The implications are obvious. If we understand addiction as a prototypical psychobiological illness, with critical biological, behavioral, and social-context components, our treatment strategies must include biological, behavioral, and social-context elements." (Lashner, 1997)

Lastly, Christopher's philosophical musings are interesting, but they seem to stray away from trying to find an explanation for behavior and instead simply deconstruct evidence. In a personal communication I explained that while most addiction researchers understand that addiction, like most other mental health disorders is composed of a continuum of control ranging from absolute control over behavior to no control whatsoever (with most people fitting somewhere in the middle and few if any at the extreme ends), categorization is a necessary evil of clinical treatment. The same is true for every quantitative measure from height (Dwarfism is sometimes defined as adults who are shorter than 4'10") to weight (BMI greater than 30 kg/m²). I think it's equally as tough to argue that someone with a BMI of 29.5 is distinctly different from an individual with a BMI of 30 as it is to argue that there is no utility in the classification. Well, the same applies for addiction, although Christopher apparently categorically objects to classification and believes it has no utility or justification.

Now for the evidence - "Choice" and "control" are not the same as "will"

Some people quit, even without help - Christopher and a number of the people he cites in support (Peele, Alexander), suggest that because some people do stop using that it can't be said that there is a problem with any individuals' capacity to stop. The problem with that argument is that it supposes that everyone is the same, a fact that is simply not true. As an example I would like to suggest that we compare cognitive control with physical control and use Huntington's Disease (HD or Huntington's Chorea) as an example.

HD patients suffer mental dementia but the physical symptoms of the disease, an inability to control their physical movement resulting in flailing limbs often referred to as the Huntington Dance, are almost always the first noticeable symptoms. Nevertheless, HD sufferers experience a number of debilitating symptoms that originate in brain dysfunction (specifically destruction of striatum neurons, the substantia nigra, and hippocampus) and that alter their ability (capacity) to control their movements and affect their memory and executive function leading to problems in planning and higher order thought processes. So, while it is true that most people can control their arm movements, here is an example of individuals who progressively become worse and worse at doing so due to a neurophramacological disorder. There is currently no cure for HD but some medications that help treat it no doubt restore some of the capacity of these patients to control their movements. If a cure is found it would be difficult to say, as Christopher suggests of addiction, that the cure does not affect the capacity of HD patients to control what they once could not. I chose HD for its physiological set of symptoms but a similar example could easily be constructed for schizophrenia and a number of other mental health disorders (including ADHD and addiction). Importantly, cognitive control is a function of brain activity, activity that can become compromised as the set of experiment I will discuss next show.

An experiment conducted at UCLA (1) has shown that cocaine administrations reduced animals' ability to change their behavior when environmental conditions called for it. Even more meaningful was the finding that once animals are exposed to daily doses of drugs, the way they react to changing environmental requirements is altered even when the drugs themselves are no longer on board and even when the learning has nothing to do with drugs per se.

In the experiment, conducted by Dr. David Jentsch and colleagues, monkeys were given either a single dose (less than the equivalent of a tenth of a gram for a 150lb human) or repeated doses (1/8 to 1/4 of a gram equivalent once daily for 14 days) of cocaine. The task involved learning an initial association between the location of food in one of three boxes and then learning that the location of the food has changed. We call this task reversal learning since animals have to unlearn an established relationship to learn a new one.

Obviously, the animals want the food, and so the appropriate response once the location is changed is to stop picking the old location and move on to the new one that now holds the coveted food. This sort of thing happens all the time in life and indeed, during addiction it seems that people have trouble adjusting their behavior when taking drugs is no longer rewarding and is, in fact, even troublesome (as in leading to jail, family breakups, etc.).

In the experiment, animals exposed to cocaine had trouble (when compared to control animals that got an injection of saline water) learning to reverse their selection when tested 20 minutes after getting the drug, which is not surprising but still an example of how drug administration can causally affect an individual's ability to make appropriate choices. As pointed above, the most interesting finding had to do with the animals that got a dose of cocaine every day for 14 days. Even after a full week of being off the drug, these animals showed an interesting effect that persisted for a month - while their ability to learn that initial food-box association, they had significant trouble changing it once they conditions changed. Remember, this effect was present with no cocaine in their system and with learning conditions that had nothing whatsoever to do with cocaine.

If that's not direct evidence that having drugs in your system can alter the way your brain makes choices, I don't know what is. Another study conducted by Calu and colleagues with rats found similar (or even more pronounced) reversal learning problems after training the animals to take cocaine for themselves, clarifying that it is the taking of cocaine and not the method that causes the impairments.

Another entire set of studies has shown that stimuli (also known as cues or triggers) that have become associated with drugs can bring back long-forgotten drug-seeking behavior once they are reintroduced. This was shown in that Calu paper I mentioned above and in so many other articles that it would be wasteful to go through all the evidence here. Importantly, this evidence shows that drug associated cues direct behavior towards drug seeking in a way that biases behavior regardless of any underlying will. My own research has shown that animals who respond greatly to drugs (nicotine in our case) likely learn to integrate more of these triggers than animals who show a reduced response, indicating once again that these animals bias their behavioral selection towards drug-seeking more than usual. While we have more studies to conduct, we believe that genetic differences relevant to dopamine and possibly other neurotransmitters important for learning (like Glutamate) are responsible for this effect.

While we can't do these kinds of experiments with people (research approval committee's just won't let you give drugs to people who haven't done them before), there is quite a bit of evidence showing an association between trouble in reversal learning and chronic drug use in humans (see citation 3 for example) as well as research showing very different brain activity among addicted individuals to drug-associated versus non-drug cues (like seeing a crack pipe versus a building). All this evidence suggests that drug users are different in the way they learn generally, and more specifically about drugs, than individuals not addicted to drugs. When it comes to genetics, we know quite a bit about the association between substance abuse and specific genes, especially when it comes to dopamine function. As expected, genetic variation in dopamine receptor subtypes important in learning about rewards (D4 and D2) has been revealed to exist between addicts and non addicts. Without getting into the techniques and analysis methods involved in these genetic studies, their sheer number and the relationship between substance abuse and other impulse disorders points to a direct relationship between drug use disorders (and possibly other addictive disorders) and a reduced capacity to exert behavioral control. Less capacity for control is what researchers have found sets addict apart from non-addicts.

Summary, conclusions, and final thoughts

In closing, there are undoubtedly imperfections about the ways we diagnose addiction. It would probably be nice if we could figure out a way to incorporate what we know about the continuous nature of the disorder with the need for clinical delineation of who requires addiction treatment and who doesn't. Addiction researchers are far from the only ones who wonder about this question though (the same issues are relevant for schizophrenia, depression, and nearly every mental health disorder) and I am certain that better and better solutions will emerge.

However, the discussion of stigma in this context needs to allow us to discuss the reality of addiction without having to resort to blaming and counter-blaming. If I describe the Toyota Prius as being slow but incredibly efficient I am no more stigmatizing than if I describe a Ferrari as being incredibly fact but wasteful in terms of fuel. The same applies, or should apply, to health and mental health diagnoses - Just because an individual is less able to exert cognitive control over impulses should not by definition call into question their standing as a human being. We are complex machines and by improving our understanding of the nuts and bolts that make us function we can only, in my opinion, improve our ability to make the best use of our capabilities while understanding our relative strength and weaknesses. Any other way of looking at it seems to me to be either wishful (I can do anything if I want it badly enough) or defeatist (I will never be anything because I'm not good at X) and neither seem like good options to me.

Citations:

1) Jentsch, Olausson, De La Garza, and Tylor (2002): Impairments of Reversal Learning and Response Perseveration after Repeated, Intermittent Cocaine Administrations to Monkeys. Neuropsychopharmacology, Volume 26, Issue 2, Pages 183-190

2) Calu et al (2007) Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats. Learning & Memory, 14, 325-328.

3) Some evidence in humans from Trevor Robbins' group: Reversal deficits in current chronic cocaine users.

© 2010 Adi Jaffe, All Rights Reserved

Adi's Mailing List | Adi's eMail | Follow Adi on Twitter

Become a Fan on Facebook | Connect with Adi at LinkedIn

advertisement
More from Adi Jaffe Ph.D.
More from Psychology Today