In 2002, Paul Pearsall from the University of Hawaii and his colleagues from the University of Arizona looked at the unique memory experiences being reported by heart transplant patients over a 10-year period. After interviewing 150 patients, he reports 9 cases were recipients of a new heart took on characteristics and desires/fears of their heart donors. These included changes in preferences for food, music, art, sexual, recreational, and career, as well as specific memories only privy to the donors.

Weird stuff. Explaining such outcomes is difficult if you want to stay in the realm of science.

In Chinese Traditional Medicine it is believed your heart stores your memory. Reigniting painful memories of secondary school pedagogy when we were told to learn “by heart.” So where is memory?

We are learning about the language of how the environment communicates. And such knowledge is adding to our knowledge of how we see our internal body communicating.  

An example of what this language might look like can be found in the plant kingdom. In short distance communication, Nigel Raine from the University of London and his colleagues observed how ants provide a useful service for the acacia plants by guarding the plant they live on. Tomatoes and tobacco plants have similar symbiotic arrangements. Wouter Van Hoven from Pretoria University reports that acacias also produce leaf tannin in quantities lethal to the antelope and thereby killing the antelopes while at the same time emitting ethylene into the air which can travel up to 50 yards warning other acacias to step up their own production of leaf tannin within just 5 to 10 minutes. Willows have been found to have a similar strategy when they are being eaten by caterpillars. These are complex communication strategies.

Jim Westwood, a plant scientist at Virginia Tech showed how a parasitic weed known as dodder/strangleweed, uses its RNA—its genetic material--to communicate with their host plants that they are nurturing from, in order for the host plant to lower its defenses.

Unique memories in our heart

Back to our bodies, the Danish biologist Bente Klarlund Pedersen is looking at a handful of myokines—a protein he identified and named—and their role in helping skeletal muscle retain memory. He acknowledges there are several hundred other secreted proteins giving internal body communication a complex language.

There is also evidence that midkine--another protein--is exchanged between the lungs and kidneys so that they “know” each other’s status. However, little is known about how the information is transferred from one organ to the other. Paul Pearsall’s findings should make us think about how our bodies stay in balance and how memory is not solely the prerogative of the brain. When this balance is disrupted, what messages is the dying organ sending out? What is our body communicating at the end of life?

© USA Copyrighted 2014 Mario D. Garrett

You are reading


The Fear of Aging in Trump's New World

The Nuanced War Between Mandatory and Discretionary Federal Budget

Stroke and the Power of Brain Plasticity

Growing your brain after a stroke